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In this paper the writers give a global existence and uniqueness theorem for a nonlinear 
integro-differential equation which occurs in the statistical theory of turbulent diffusion. The 
theorem is more general than that presented by S. H. Chang and J. T. Day (J. Comput. Phys. 
26 (1978), 162). The problems of the existence and uniqueness of a solution to the equation 
are solved completely. Implicit Runge-Kutta methods with m stages and optimal order p = 2m 
for the approximate solution of the equation are introduced. Computational examples are also 
considered. 0 1987 Academic Press. Inc 

1. INTRODUCTION 

Consider the nonlinear integro-differential equation 

tr'(t)+a(t)u(t)+Sdk(f,s)u(t-s)u(s)ds=f(1), O<t6T,u(O)=c, (1.1) 

where the functions a(t), f(t) and k(t, s) are continuous for 0 6 s < t 6 T, and c is a 
constant. Equations of this type occur as model equations for describing turbulent 
diffusion (see Velikson [2] and Monin and Yaglom [3]). In [l] an existence and 
uniqueness theorem for Eq. (1.1) and a numerical algorithm are given, but the 
theorem and the numerical method are merely valid under the following conditions: 

(i) u(t) >, 0 for all 0 d t < T, and 

(ii) /cl+ orlf(t)ldt~i,S1SIIk(r,S)I dsdr-ci. 
s 0 0 

In Section 2 of this paper we remove the above restrictions and prove a global 
existence and uniqueness theorem for Eq. (1.1) using Schauder’s fixed point 
theorem and some inequalities. It is also proved that the smoothness properties of 
the solution of (1.1) depend merely on those of the functions u(t), f(t) and k(t, s). 
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In Section 3, implicit Runge-Kutta methods for finding the numerical solution of 
(1.1) are introduced. These methods can be viewed as fully discretized collocation 
methods in certain polynomial spline spaces (see also [S] ). We could compute the 
desired numerical solution through solving a system of nonlinear equations an 
some systems of linear equations. These methods are high-order numerical 
methods, and global discretization error estimates for the methods are obtained. In 
Section 4, the formulas of a 4th-order implicit Runge-Kutta method are given. 
Several computational examples are considered. It is found that the method we 
used has two major advantages: stability and accuracy. 

2. MAIN THEOREMS 

Equation (1.1) can be transformed to an equivalent integro-differential equation 
Let 

A(t) = 1; a(s) ds. 

Multiplying Eq. (1.1) by eACr), we obtain 

(e A(r) u(t))’ + j; eA(‘)k(t, s) u(t-s) u(s) ds=f (t) eA(‘/. e.11 

Then, we have 

U’(t)+jrK(t,s) U(t-s) U(s)ds=F(t), O<t<T, U(O)=c, (2.2)’ 
0 

where 

U(t) = u(t) eAcr), F(t) =f(t) eAct), 

K(t, s)=qt, s) eA(+4s)--A(r--s)~ 

Therefore, it is easy to find that the existence and uniqueness properties of Eq. 
(1.1) are equivalent to those of the following equation (for the sake of simplicity, we 
still use the notation of u(t), f(t) and k(t, s)), 

u’(t)+j%(t,s)u(t-s)u(s)ds=f(t), 0 < t < T, u(0) = c, (2.2) 
0 

where the functions f(t) and k(t, s) are continuous for 0 d t < T and 0 < s d t < T9 
respectively, and c is a constant. 

THEOREM 2.1. Equation (2.2) possesses a unique solution UE C’(I)), where 
I= [0, T]. (Here, C”(J) denotes the space offunctions with continuous nth derivatives 
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on the interval J when n is a positive integer, and C(J) denotes the space of continuous 
functions on the interval J.) 

Proof: Step 1: Construct an operator S. Let V= C(1). Choosing an arbitrary 
function v E V, one defines ZJ = S(v) to be the solution of 

u’(t)+j’k(t,s)v(t-s)v(s)ds=f(t), O<t<T,u(O)=c, (2.3) 
0 

that is, 

u(t) = c - f’ Jr k(r, s) v(r - s) v(s) ds dr + [if(s) ds. (2.4) 0 0 

Step 2: S: V + V is a compact operator. From (2.4), if v E V, then S(v) = u E V. 
Let X be a bounded subset of V, namely ljvll := maxo G tG T jv( t)l is less than a con- 
stant for any v E X From (2.3), there exists a constant M, such that IIu’II GM for 
any v E X. By the mean-value theorem, one has lu(x) - u(y)1 < M Ix - yl for all x, 
y E 1 In particular, if one chooses y = 0, then [u(x)1 < ICI + MT for all x E 1 Hence, 
by the Ascoli-Arzela theorem, there exists a convergent subsequence of the set 
{u = S(v) I v E X}. S: V -+ V is thereby a compact operator. 

Step 3: Conclusion. Let Q = (v E VI Iv(t)1 < he”, O<t<T}, where r= 
4KWT+ ICI), h=WT+ ICI), K=maxo~..,,TIk(t,s)l, F=n-mo.,.T I (t)l. It is 
readily verified that Q is a closed convex and bounded set in V. For any v E Q, one 
has 

lu’(t)l= -J;k(t,s)v(t-s)v(s)ds+f(t)/ 

< s ’ lk(t, s)l lv(t-s)l Iv(s)1 ds+J’ 
0 

< fKh2e’(r-S)e”ds+F s 0 

<Kh2e”T+F. 

Since inequality (2.5) is valid for 0 < t < T, one has 

[u(t)1 = J; u’(s) ds + cl 

d ; lu’(s)l ds+ ICI s 

< ;(Kh s ‘e”T+F)ds+Icl 
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=Kh2T;(e”- l)+Ft+ ,cJ 

<Kh2T;er’+FT+ ICI 

= (PT+ Icl)(P + 1) 
6 her’ 

and therefore, S maps Q into itself. S being a compact operator has a fixed point 
UE Q by Schauder’s fixed point theorem. One can easily show that u is a solution of 
(2.2). Since UE Q, and from (2.4), we know that u E C’(1). 

If U, v E C’(1) are the two solutions of Eq. (2.2), one can obtain 

e’(t)+jtw(t,S)e(s)ds=O, O<t<T,e(O)=O, (2.6) 
0 

where e(t)=u(t)-u(t) and w(t,s)=k(t, t-s)u(~--)+k(t,~)u(t--s). 
Since u(t), v(t) and k(t, s) are continuous functions, there exists a positive 

constant B such that maxO G f G T St, w2(t, s) ds < B. From (2.6) one can get 

(e2(t))’ = -2e(t) 1: w(t, s) e(s) ds 

2 

< e2(t) + if w(t, s) e(s) ds 
0 

~e’(t)+S’~Z(l,S)dSjieZ(g)d~ 
0 0 

< e2(t) + B j’ e’(s) ds. 
0 

Let Z(t) = f;, e’(s) ds; then one has 

Z”(t) d Z’(t) + BZ( t), 0~t~T;Z(0)=Z’(0)=0. 

Furthermore, one can verify that 

(eeP’(Z(t) eeqr)‘)’ < 0, o~t~T;Z(O)=Z’(O)=0, (2.7) 

where p = -( 1 + 4B)‘j2 and q = f( 1 -p). Since Z(t) 2 0 for 0 < t < T, one can get 
Z(t) = 0 for 0 < t d T from (2.7). Hence e(t) = 0 for 0 d t < T; i.e., Eq. (2.2) 
unique solution in the space C’(1). The proof of Theorem 2.1 is thereby complete. 
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COROLLARY 2.1. Equation (1.1) possesses a unique solution u in the space C’(fl. 

THEOREM 2.2. If the functions a(t), f(t) E C?(I)), d(J) k(t, s)/dtJ-‘as’, 0 < i<j< n, 
are continuous for 0 <s < t < T, then Eq. (1.1) possesses a unique solution 
24 E c+ ‘(I). 

Proof. By Corollary 2.1, there exists a unique solution UE C’(1), such that 

u’(t)= -a(t)u(t)-Jik(t,s)u(t-s)u(s)ds+f(t), O<t<T,u(O)=c. (2.8) 

Under the assumptions of the theorem and by (2.8), one can easily show that 
u E C”+ ‘(1). The proof of the theorem is therefore complete. 

We now know that the smoothness properties of the solution of Eq. (1.1) depend 
merely on those of the functions a(t), f( t) and k( t, s). Thus we can use higher-order 
numerical methods to solve Eq. (1.1) when those functions are smooth. 

3. NUMERICAL METHODS 

In this section, we introduce implicit Runge-Kutta methods with m stages and 
optimal order p = 2m for finding the numerical solution of (1.1). These methods 
were originally used for Volterra integro-differential equations (see Brunner [S] ). 
We use similar ideas to determine the approximate solution of (1.1). The underlying 
theoretical results for these methods are discussed in [4]. The results of the 
numerical solution of several examples are summarized in the next section. 

Implicit Runge-Kutta methods can be viewed as fully discretized collocation 
methods in certain polynomial spline spaces. The polynomial spline space used 
for the approximation of the exact solution of Eq. (1.1) is defined as follows: let 
N> 1, m 3 1 (with N, m are positive integers), 0 = to < t, < ... < t, = T, 
z,= {tn: n=o, . ..) N-l}, Z,=Z,uT, and set rn=[tn,tn+l] (n=O,...,N-1). 
Then 

S’O’(Z,) = (u E C(I): u 1 I, = u, E P, (n = 0, . . . . N - l)}, (3.1) 

with dim(SE)(Z,)) = Nm + 1, is our approximating polynomial spline space, where 
P, = {p(x) [p(x) is a polynomial function, degree of p(x) d m}. Let 
X(N) = Utli’_t X,, with 

X,={t,+cjhIO,<c,< ... <c&l} (n =O, . . . . N- 1) (3.2) 

denote the set of collocation points at which the desired approximation y E S$j’)(Z,) 
is to satisfy the given integro-differential equation (1.1). This approximation is thus 
determined recursively by 
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i= 1, . . . . m (n = 0, ,.., iv- 1). (3.3) 

For SE[rk,tk+l], lets=tk+6h, 6E[o, 11, k=O ,..., N-l; then 

Y;(fn + c, h) + dt, + c,h) y,(t, + c,h) + h j” k(t, + c,h, t, + Oh) 
0 

Xy,,(f,+Bh)y,((C,-O)h)~~+h~~ljc’k(t,+C,h, tk+&) 
k=O o 

‘yk(‘k+‘~)J.r-k(f,,~k+(Ci-0)h)dB+h~~’j1k(r,,+c,h.rk+(lh)yk+Bh) 

k=O 0 

Since y E C(I), we have 

i= 1 * . . . . m, (n = 0, . ..) w- 1). (3.4) 

Yn(fn) =Yn- 1(t,L t, E Z, (with y,(O) = c). (3.5) 

In most cases the integrals occurring in the collocation equation (3.5) cannot be 
found analytically but have to be approximated by suitable quadrature formulas 
(compare also [5]). This means that, instead of y E Sz)(Z,), we compute an 
approximation 9 E S!$(Z,) from a perturbed collocation equation, 

~~(t,+c,h)+a(t,+c,h)~,(t,+cih-+h f w,k(t, + C,h, t, + c&z) 
J=l 

n-l i 

x.f,(t, + C,c,&k&j-C,Cj) A) + h c 1 w,k(t, f C,h, t,+ cjh) 
k=O j=l 

n-l m 

x~k(‘k+Cjh)~n-k(tn-kk$C,-Cj)h)+~Z 1 C Wik(t,+C,h, t,+Cjh) 
k=O I=‘+1 

xBk(fk+Cjh)p,-k-l(tn~k-l+(lfCi-CJ)h)=f(t,+c,h), 

i= 1, ...9 m (n =o, . ..) N- l), (3.6) 

where we use the m-point Gauss quadrature formulas. 
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We have proved that 

and 

lb-~‘11, =oy;$T b’(t)-.Y’(f)l = OW) (3.8) 
. . 

14&J -y(hJl = o(h2m)> tnEZN (3.9) 

Now we rewrite the discretized collocation equation (3.6) in a form which 
exhibits more clearly the fact that (3.6) defines a class of implicit Runge-Kutta 
methods for the solution of Eq. (1.1). Define Yj”) = jA( t, + c, h) (where 9: E P, _ 1) 
and set 

qJ(x’=rvlz (j= 1, . ..) m). 
r 

(3.10) 

i-#j 

Since j’ (t + Oh) = C’.?! r qJ(0) Y!“) we have n n J J ’ 

j,(tn + Hz) =$, + h 2 bj(e) Yj”‘, 
j=l 

(3.1 

where we have set j, =j,(t,) (= jnP l(t,)), and 

1) 

j = l,..., m. (3.12) 

Thus, the fully discretized collocation equation can be written in the form 

Y:“‘+a(t,+c,h) jn+h f bj(Ci) Yp Sh f wirk(t,+cjh, t,+qc,h) 

j=l i-=1 

( 

m 

x g,+lz 1 b,(c,c,) Y:“’ 
I( 

Jo + h f bj(Ci - qc,) Yy’ 
J=l j=l ) 

n-l i 
+h c 1 w,k(t,+cjh, t,+c,h) 

k=O r=l 

jjn-k+h -f b,(cj-c,) Yjn-‘) 
j=l > 

n-l m 
+h c c w,k(t,+cjh, tk+c,h) $k+h -f b,(c,.) Yik’ 

k=O r=i+l ( J=l 

.?n-k-l+n f b,(l+c,-c,) Yp-'--l) =f(t,+Cjh), 

j=l > 

i = 1, . . . . m (n = 0, . . . . N- 1). (3.13) 
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Rearranging the relation (3.13), we obtain for n = 0, 

ha(c,h)b,(cJ fj&h2 f 
( 

w,,k(czk v,hWJkc,) + bib - c,c,J 
r-=1 Y _1 

x Yy’+ h3 2 f 
k=l ~=l [ 

f w,,k(cih, c,c,h) b,(c,c,) b,(c, - c,c,) 
r=l 

x Yj”)Y~o)+~oa(c,h) + hj; f w,-k(cih, c&4 =f(ch), i = 1, . . . . m, (3.14) 
J=t 

where j. = c, and for n 3 1, 

Yl”‘+ f Al;“’ yy = -B(“‘$, + p, i = 1, . . . . m (n = 1, . . . . N- I), (3.15af 
J=l 

where 

A$’ = ha(t, + c,h) b,(q) + h2 f w,rk(t, + c,h, tk + c,c,.h) b,(cjc,) 
f-=1 

X j. + h f bk(C,(l -c,)) Yip) 
( k=l 1 

+ h2 i w,k(t, i- c,h, c,h) 
r= 1 

90 +h f b/c(G) yip) , 
k=l 

(3.1%) 

B{n)=a(t,+c,h)+h c w,,k(t, + c,h, t, + c,c,hf 
r=l 

X jO+h f bj&(l-~,))Y~~) 
k=l 

+h i w&t,+ c,h, c,h) jo+ h f bk(c,) Y;O’ , 
?-=I ( k=l 1 

n-l I m 

C?‘=f(t,+c,h)-h c c w,k(t,+c,h, tk+C,h) jki-h b,(G) Yj”’ 
k=l r=l J=l 

jnpk+h f b,(q-c,) Yj’pk’ 
J=1 

k=O r=r+l 

(3.152) 

jk i- h 2 b,(q) Y,‘“’ 
>( 

fn-k--l+h f b,(l +c,-cC, Y;-kpl) 
j=l J=l 
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We also have 

y,=y,-,(t,_l+h)=9,_l+h f b,(l) YJn-1) 
1 ” (n = l,..., N). (3.16) 

j=l 

Note that (3.13) is a nonlinear system. Fortunately, we can compute Yp) and y, 
(n 2 1, i= 1, . . . . YM) by (3.15) and (3.16) through solving some systems of linear 
equations if we know the initial value Yi”) (i= l,..., m). Newton iteration or even a 
simpler one can be employed to determine the initial value from (3.14). It can be 
justified that for any given starting value Yi”),O (i= l,..., m) the iteration is con- 
vergent whenever h > 0 is sufficiently small. 

4. NUMERICAL EXPERIMENTS 

In Section 3, we have seen that an implicit Runge-Kutta method (3.13) or 
(3.14k(3.16) for (1.1) is characterized by the following arrays: the collocation 
parameters (cl; i= 1, . . . . m}, the quadrature weights of Gauss quadrature formulas 
{ wil; i, j= l,..., m} and {wj;j= 1, . . . . m}. We choose them appropriately so that the 
results (3.7), (3.8) and (3.9) are valid (see [4] or [S]): m =2; cl = (3 --3)/S, 
c2 = (3 + ,/?)/6; w1 = w2 = 4; and 

w= (w,) = (3%fi)/12 (3-&/E 
(3+3)/12 (3+&12 

(blb)MX)) = (x(x - 2c,KYc, - c,); x(x - 2c,)P(c, - Cl)). 
We consider the following examples: 

EXAMPLE 1. 

u~(t)+fe-2~u(t)+J-~~e-(t+s%(t-S)u(S)dS 
1 1 z.z --e 
4 

-‘+Ee-2r, O<t<4, 

u(0) = f. 

The exact solution is u(t) = $ e -‘. 
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EXAMPLE 2. 

u’(t) - 
1 

LU(t)+ib~(til)2(S+l)~ t+l 
u( t - s) u(s) ds 

=f t+l-- 
i 

1 1 (t-t l)* ’ 
O<t<4, 

u(0) = 1. 

The exact solution is u(t) = (f + 1)2. 

EXAMPLE 3. 

u’(t)+U(f)-$(t--S)u(s)ds=30(1+t)cos3t o<tg4, 

u(0) = 0. 

The exact solution is u(t) = 10 sin 3t. There are some difficulties in getting an 
accurate approximate solution for this example, because the derivative of the exact 
solution changes rapidly on the interval [0,4]. 

EXAMPLE 4. 

u’(t) + u(t) + j-i tsu(t-s)u(s)ds=$(t’-10z+20)+t2-2, O<ttd, 

u(0) = 0. 

The exact solution is u(t) = t( t - 2). 

We list in Tables I, II, III, and IV the resulting errors. By error we mean 

error = /exact value - approximate value/. 

The programs are written in FORTRAN in double precision for the Honeywell 

TABLE I 

Errors for Example 1 

1 h=O.l 

0.5 4.04 x 10-g 
1.0 4.18 x 1O-9 
2.0 3.31 x 10-V 
3.0 2.81 x 10m9 
4.0 2.64 x 1O-9 

h=0.05 

2.19 x lOWLo 
2.12 x lo-‘0 
1.64 x io-‘0 
1.34 x lo-lo 
1.23 x lo-lo 

h =0.025 

3.97 x lo-‘2 
7.45 x lo- l2 
1.17 x lo-” 
1.36 x 10-l’ 
1.43 x 10-l” 
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TABLE II 

Errors for Example 2 

t h=O.l h = 0.05 h = 0.025 

0.5 4.19 x 10-g 2.04x 1O-9 1.01 x 10-9 
1.0 6.91 x 1O-9 3.36 x 10m9 1.66 x 10-g 
2.0 9.81 x 10-g 4.79 x 10-g 2.36 x 10m9 
3.0 1.08 x 10-g 5.23 x 1O-9 2.51~10-~ 
4.0 1.04x10-* 5.02 x 1O-9 2.41 x -9 10 

1 

TABLE III 

Errors for Example 3 

h=O.l h = 0.05 h = 0.025 

0.5 3.99 x 10-S 2.36 x 1O-6 1.44 x lo-’ 
1.0 6.85 x 1O-5 4.31 x 10-h 2.69 x LO-’ 
2.0 7.24 x 10 -4 4.54 x 1om5 2.84 x 1O-6 
3.0 4.29 x 10P3 2.68 x 10 --4 1.68 x 10m5 
4.0 2.84 x 1O-2 9.59 x 10 -3 1.12 x 10-4 

t 

TABLE IV 

Errors for Example 4 

h=O.l h = 0.05 h =0.025 

0.5 1.99 x 10-g 1.84 x lo-‘0 1.39 x lo-” 
1.0 4.31 x 10-s 3.17 x 10-g 2.20 x lo-‘0 
2.0 1.87 x 10 -’ 5.32 x lo-* 3.50 x 1o-9 
3.0 6.74 x 10 -6 4.41 x 1om7 2.87x lo-* 
4.0 7.00x 10-S 4.62 x 1O-6 2.94x 1O-7 

DPS8 at Peking University. It appears that the implicit Runge-Kutta method we 
used has two major advantages: stability and accuracy. The major drawback is that 
the algorithm we used above is somewhat more complicated to use than the 
multistep method presented in [l]. 

Note. The programs for the implicit Runge-Kutta method can be obtained from 
the authors. 
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